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ABSTRACT

Several turbulent and nonturbulent solutions of the
Navier-Stokes equations are obtained. The unaveraged equations
are used numerically in conjunction with tools and concepts from
nonlinear dynamics, including time series, phase portraits,
Poincaré sections, largest Liapunov exponents, power spectra, and
strange attractors.

Initially neighboring solutions for a low-Reynolds-number
fully developed turbulence are compared. The turbulence is
sustained by a nonrandom time-independent external force. The
solutions, on the average, separate exponentially with time,
having a positive Liapunov exponent. Thus the turbulence is
characterized as chaotic.

In a search for solutions which contrast with the turbulent
ones, the Reynolds number (or strength of the forcing) is reduced.
Several qualitatively different flows are noted. These are,
respectively, fully chaotic, complex periodic, weakly chaotic, simple
periodic, and fixed-point. Of these, we classify only the fully
chaotic fiows as turbulent. Those flows have both a positive

Liapunov exponent and Poincaré sections without pattern. By contrast,



the weakly chaotic flows, although having positive Liapunov
exponents, have some pattern in their Poincaré sections. The
fixed-point and periodic flows are nonturbuient, since turbulence,
as generally understood, is both time-dependent and aperiodic.

By using both the unaveraged Navier-Stokes equations, and the
corresponding averaged or moment equations, turbulent solutions
are obtained in which energy cascades from large to small-scale
motions. In general the spectral energy transfer takes place
between wavenumber bands that are considerably separated. The
spectral transfer can occur either as a result of nonlinear
turbulence self-interaction or by interaction of turbulence with
mean gradients. The latter appears to be closely related to a
nonuniform or sudden turbulent mixing shown to occur in the
presence of mean gradients.

Turbulent systems are compared with those studied in kinetic
theory. The two types of systems are fundamentally different
(continuous and dissipative as opposed to discrete and
conservative), but there are similarities. For instance, both are
noniinear and show sensitive dependence on initial conditions.
Also, the turbulent and molecular stress tensors are identical if
the macroscopic velocities for the turbulent stress are replaced

by molecular velocities.
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I. INTRODUCTION

Fluid turbulence is a many-faceted phenomenon. It has been
characterized as random, nonlinear, multiscaled, dissipative, as
having a negative velocity-derivative skewness factor, as
transferring energy (mainly) to small-scale motions, as being
dissipated by small-scale motions, as tending toward isotropy, and
as having an infinite number of components or degrees of freedom.
Those descriptions appear in what might now be called the classical
or statistical theory of turbulence.1-4 That theory is based
mainly on averaged or moment equations obtained from the
Navier-Stokes equations.

The idea of using averaged equations, rather than the
unaveraged Navier-Stokes equations directly in an analysis, has
been adopted in the past mainly because it was thought that
averaged, smoothly varying quantities should be easier to deal with
than the haphazard motions occurring in the unaveraged equations.
However because of the nonlinearity of the Navier-Stokes equations,
the averaging process introduces the closure problem (more unknowns
than equations),] so that it is not clear that averaging is
advantageous as far as getting solutions is concerned. The
averaged or moment equations are, however, useful for discussing

the physical processes occurring in turbulence.4



In recent years there have been attempts to utilize concepts
from the theory of nonlinear dynamical systems in the analysis of
turbulence.5-9 There, in contrast to the statistical theory, the
emphasis is on unaveraged, rather than on averaged equations. The
use of unaveraged equations in which the velocities vary in a
complicated way is made feasible by the advent of high speed
computers. By using ideas from nonlinear dynamics one might (as
further evidence that turbulence is a many-faceted phenomenon)
characterize turbulence as chaotic, as aperiodic, as having
sensitive dependence on initial conditions, as having time series
without pattern, as having a positive Liapunov exponent, as having
a phase portrait without pattern, as having Poincaré sections
without pattern, as lying on a strange or chaotic attractor, and
as having continuous time and spatial spectra.

Both the statistical (classical) theory and the newer
nonlinear dynamics theory provide valid ways of looking at
turbulence. The latter furnishes a number of new tools for
probing the nature of turbulence (e.g., Liapunov exponents,
Poincaré sections, etc.). But as yet it does not seem to provide
a means of discussing such well-known aspects of turbulence as
spectral and directional transfer of energy. Those aspects can,
however, be considered within the framework of conventional

turbulence theory.



.

Here we study the nature of Navier-Stokes turbulence; that
is, we consider the turbulence obtained in solutions of the
Navier-Stokes equations. In order to obtain as clear a picture as
possible, use is made of concepts both from nonlinear dynamics and
from the more conventional (statistical) turbulence theory.
Sensitive dependence on inittal conditions, strange attractors,
and spectral transfer between wavenumbers are included. All of
those are shown to occur in turbulence by obtaining and
interpreting (mainly numerical) solutions of the Navier-Stokes
equatians.

In order to give a sharper characterization of turbulence,
turbulent solutions are contrasted with periodic, quasiperiodic,
and fixed-point solutions. Turbulent systems are also compared
with those considered in the kinetic theory of gases. It is shown
that there is a certain suddenness inherent in turbulent mixing,

as there is in molecular mixing by collision of gas particles.



IT. BASIC EQUATIONS AND A LONG-TERM TURBULENT SOLUTION
WITH STEADY FORCING

The incompressible Navier-Stokes equations, on which the

present study is based, are
§p—+\)-———i—--«t»|7. (n

together with a Poisson equation for the pressure
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p 0k Q
= - + . (2)
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The subscripts can have the values 1, 2, or 3, and a repeated
subscript in a term indicates a summation, with the subscript
successively taking on the values 1, 2, and 3. The quantity u;j

is an instantaneous velocity component, x; is a space coordinate,
t is the time, p 1is the density, v is the kinematic viscosity,

p 1is the instantaneous pressure, and Fj; 1is a time-independent
forcing term, or external force, which is taken as some fraction

x Of the negative of the initial viscous term at t = 0. That is,

82ui
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The fraction x controls the value of the asymptotic Reynolds
number of the flow. The initial nonrandom wuj; in Eq. (3) are

given at t = 0 by/.8



Uj = aj CoS g-X + bj €Os rex + Cj COS S-X, (4)
where
aj = k€2,1,1), by = k(1,2,1), ci = k(1,1,2),
qi = (=1,1,D/xq, ri = (1,-1,1)/xq, si = (1,1,-D/xg, (5)

k is a quantity that fixes the initial Reynolds number at t = 0,
and xg 1is one over the magnitude of an initial wavenumber
component. Through £q. (3), xop 1is also one over the magnitude of
a wavenumber component of the forcing term Fy. Equations (4) and
(5) satisfy continuity, and Eqs. (1) to (3) insure that continuity
is maintained. Moreover Eqs. (3) to (5) give Tocal values of Fj
which are symmetric with respect to 90° rotations and translations

of 2wxg. Then we find numerically that

;? . ;g . ;g (62)
at all times, where the overbars indicate values averaged over
space. After the initial transients have died out, the averages
may also be taken over time, and the inexact equalities in Eq.

(6a) become equalities. Equation (6a) then becomes

= 2 3

Uy = u, = u3 . (6b)
where the double bars indicate averages over space and time. The
boundary conditions are periodic with a period of 2mxg. From

Eq. (3) and continuity, the last term in Eq. (2) is zero for our

system.




Equation (1) is a nonlinear dissipative equation for the
evolution of the vector wuj. Although a Navier-Stokes fluid is
Tinear (stress proportional to strain rate), a nonlinearity
appears in Eq. (1) as an effect of inertia. The equation is
autonomous, since time does not appear explicitly on the right
side, and deterministic since there are no random coefficients.
Note that the equation would nét be autonomous if the forcing
term F; were time-dependent. Equation (1), although
three-dimensional in physical space, is infinite-dimensional in
phase (or state) space, since it is a partial differential
equation. (The number of dimensions of the phase space of our
system is the number of wuj;'s required to specify the velocity
field at a particular time. The pressure is not specified; it is
calculated from Eq. (2).) The equation can be converted to an
infinite system of ordinary differential equations by, for
instance, introducing finite-difference representations of spatial
derivatives (and letting grid spacing approach 0), or by taking
the spatial Fourier transform of the equation. Because it is
dissipative, the infinite system can be represented by a finite
system of equations.‘O There should be a viscous cutoff, below
which motion becomes unimportant as the scale of the motion
decreases. Thus a numerical solution should be possible, at Teast
for low Reynolds numbers. Equation (1), together with Eq. (2) for
the pressure, Egs. (3) to (5) for the forcing term, Egs. (4) and

(5) for the initial conditions, and periodic boundary conditions,



can be considered a nonlinear, deterministic, autonomous,
dissipative, dynamical system. The system is deterministic, since
there are no random elements in Egs. (1) to (5) or in the boundary
conditions.

The numerical method used for the solution of Eqs. (1) to (5)
has been given previously.”»11 A cubical computational grid (323
grid points), fourth-order spatial differencing, and third-order
predictor-corrector time differencing are used. In order to obtain
numerical stability for the highest asymptotic Reynolds number
(13.3), it was necessary to use about 50 time steps in each small
fluctuation of velocity, so that the fluctuations with respect to
time are well resolved indeed. The spatial resolution is also
good and will be discussed later, in connection with Fig. 5.

It follows from Eqs. (3) to (5) that the nonrandom initial
condition on uj applied at t = O is proportional to the steady
farcing term Fj. The quantity (ujdt-0, Oor Fj, on an «xj -’xk
plane through the numerical grid center is plotted in Fig. 1.
Figure 2 shows the magnitude of the vector (ujdt_g or F;. A
high degree of spatial symmetry of (ujd+_.9 and of Fy is apparent
from these plots. Note that as a result of the symmetry, the
subscript i can designate any component of the vectors, and that
the Xj - Xk plane can be any plane through the numerical grid
center parallel to the grid axes. That is, i,j, and k=1, 2, or
3; J # k. Moreover, the symmetry allows the development of

symmetric turbulence in a box, where the box has periodic walls.
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Figure 1. - Piot of forcing term F; in Eq. (1) or of regular initial velocity component u;on a
plane through center of numerical grid. X and x; are coordinates on the plane and x o
is the reciprocal of a wave-number component oj| the forcing term.

Figure 2. - Magnitude of forcing vector or of reguiar initial velocity vector on a plane
through numerical-grid center.
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Results for the evolution of (u%) for x in Eq. (3) equal
to 1 (asymptotic Reynolds number, 13.3) are given in Fig. 3 (see
Fig, 3 for definition of the Reynolds number). The value of k in

Eq. (5) is 20, giving an initial Reynolds number at t = 0 of 34.6.

— 1/2
The velocities have been divided by (ug) , where the 0 again

refers to t = 0. An asymptotic turbulent solution is obtained
for t* > 5. (The asterisk on t indicates that it has been
nondimensionalized by xgo and v.)

A rather remarkable feature of turbulent flow is that a
time-dependent haphazard flow can result when the applied exciting
forces are steady (e.g., in a fully developed turbulent pipe fiow
with a steady applied pressure gradient). Figure 3 shows that the
Navier-Stokes turbulence calculated here exhibits this feature,
since a steady forcing term produces an apparently haphazard time-
dependent motion. This is evidently an indication of the inherent
instability of the nonlinear Navier-Stokes equations except at
very low Reynolds numbers. It will later be seen that our steady
forcing term can also produce time-dependent nonturbulent flow.

It should be mentioned that the symmetry present in the
initial conditions (Egs. (4) and (5)) which, for instance, causes
the three local velocity components to be equal for xj = X2 = X3
at t = 0, has been destroyed before t* = 5, apparently by
roundoff errors. This symmetry breaking for local values must
indeed occur in order for true turbulence to develop, and in fact

the fluctuations eventually die out if the symmetry remains. Here
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Figure 3. - Calculated evolution of turbulent velocity fluctuations
with a time-independent forcing term. Ordinates normalized
by initial condition. Root-mean square velocities (with a single
bar) are spatially averaged. Developed Reynoids number
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(01 ) Xgfv = 13.3, where the double bar indicates an
average over space and time for I > 5, x = 1. x§ = xy/xg =
/B, x; = 21n/16, X3 = 23x/18, for unaveraged fluctuations.

323 spatial grid points.
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the initial fluctuations were not strong enough to destroy the
symmetry before the fluctuations become too small to be seen on
the uy curve. The symmetry breaking apparently occurred on the
flat portion of the curve by the accumulation of roundoff errors.
For higher initial Reynolds numbers (not shown) the initial
fluctuations were strong enough to break the local symmetry
earlier, and the flat portion of the uy curve was absent.

The mean skewness factor S of the velocity derivative of

our Navier-Stokes turbulence in Fig. 3 is calculated to be

3 3 3/2

au] au]
S = 5;; 5;; = -0.52, (7

where the skewness factor is averaged over time after the powers
of the velocity derivative have been averaged over space. This
value is close to those obtained experimentally for a variety of
simple turbulent flows,12 where the Reynolds numbers of the
experiments were in the same range as that for the solution in
Fig. 3.

Instantaneous (unaveraged) terms in the Navier-Stokes
equation (Eq. (1)) for i = 1 at the numerical grid center are
plotted in Fig. 4. These include the nonlinear convective term
-3(ujuk)/dxk, the steady forcing term Fy, the viscous term
vazu/axkaxk, and the pressure term -(1/p)dp/dx;.

For the asymptotic or developed region (for t* > 5) the

viscous term is of the same order of magnitude as the steady
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forcing term. This is reasonable since the forcing term
replenishes the energy lost by viscous action. On the other hand
the nonlinear convective and pressure terms are much larger. (The
pressure term is nonlinear through Eq (2).) It may seem
surprising that a small forcing term can produce large convective
and pressure terms; apparently those terms are amplified by the
instability of the Navier-Stokes flow at the Reynolds number in
Fig. 3. The tendency is even greater at higher Reynolds numbers
(not shown). If we compare the nonlinear convective and pressure
terms with the viscous term rather than with the forcing term, the
trend is not surprising, since it is well-known that the nonlinear
terms become much greater than the viscous as the Reynolds number
of a turbulent flow increases. As was mentioned before, the
forcing term is of the same order of magnitude as the viscous.

Calculated spatial variations of velocity fluctuations are
plotted in Fig. 5. Although the Reynolds number is low, there is
some tendency for velocity gradients to become large in some
regions, thus indicating the hydrodynamic instability of the
flow. This tendency to form steep gradients is, of course, a
well-known property of turbulent flows. In order to give an idea
of the numerical resolution obtained, grid points are indicated by
symbols; all of the scales of motion are well resolved.

The number of degrees of freedom or modes used in the present
solution (323 grid points times three directional velocity

components) was compared with the criteria for sufficient
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Figure 5. - Calculated spafial variation of velocity
fluctuations on a plane through grid center at
t* = 13.74. Symboalis are at grid points. -O-
i=2, =1, 4+i=2,1=2; i=l, b=t
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determining modes obtained by Constantin et al.10 Both on the
basis of the ratio of the largest to smallest length scale and on
the basis of Reynolds number, the number of determining modes used
in the present solution was considerably larger than required for
a qualitatively correct solution. So according to the criteria
of reference 10, there are plenty of determining modes for a
qualitatively correct solution. That reference does not address
the problem of a quantitatively correct solution.

After initial transients have died out (for t* > 5), the
flow considered in Figs. 1 to 7 lies on a strange attractor. This
is because, as shown,8 the flow exhibits sensitive dependence on
initial conditions, and because the Navier-Stokes equations
represent a dissipative system, so that volumes in phase space, on
the average, contract (for large times volumes in phase space
approach zero!).6,7.13 We have also shown that sensitive
dependence on initial conditions occurs for decaying turbulence.’

Figure 6 shows an instantaneous velocity vector field in the
asymptotic (developed) region projected on the x) - xp plane
through the numerical grid center. The time is t* = 13.28. A
few instantaneous stréamlines have also been sketched in. The
flow in Fig. 6 appears to be composed of random jets and whirls;
other projections of the velocity vector field have a similar
appearance, but with jets and whirls at different locations.

A three-dimensional representation of an instantaneous

velocity field in the asymptotic region is given in Fig. 7. The
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magnitude of the velocity vector |u| is plotted on the xj - xo
plane through the numerical grid center. The time is again

t* = 13.28. Figure 7, as well as Fig. 6, illustrates the chaotic
appearance of the velocity field. It is evident that the symmetry
present in the nonrandom initial conditions in Figs. 1 and 2 has

been broken for the developed flow in Figs. 6 and 7.



IIT. SOME TURBULENT AND NONTURBULENT NAVIER-STOKES FLOWS

In this section (except for one of the flows considered for
illustrative purposes in Fig. 8) we will use as initial conditions
the spatially chaotic conditions in Figs. 6 and 7. These corre-
spond to the flow in Fig. 3 at t* = 13.28. As shown,8 that flow
is chaotic (the Liapunov characteristic exponent is positive).

The use of chaotic initial conditions tends to assure that the
unstable modes in a given flow are excited.

The effectiveness of chaotic initial conditions in exciting
unstable modes is illustrated in Fig. 8. The Reynolds numbers of
both the nonchaotic initial conditions and of the asymptotic flow
in Fig. 8(a) are higher than those in Fig. 8(b), where the initial
conditions are chaotic. Since the asymptotic flow in Fig. 8(a)
is time-independent and that in Fig. 8(b) is chaotic, one sees
that the character of these asymptotic flows is controlled by
whether or not the initial conditions are chaotic, rather than by
the Reynolds numbers. Of course if the initial Reynolds number is
high enough, as in Fig. 3, the asymptotic flow may be chaotic even
if the initial conditions are regular. At any rate it is clear
from Fig. 8 that the use of chaotic initial conditions tends to
make the asymptotic flow chaotic, when that is possible. It tends
to insure that unstable modes are excited. But it will be seen
that, depending on the final Reynolds number, a variety of

asymptotic flows can be obtained from chaotic initial conditions.

18
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The procedure for the calculations in the remainder of this
section is this: The initial conditions, which are spatially
chaotic, are obtained from the chaotic flow in Fig. 3 for
t* = 13.28. (See also Figs. 6 and 7.) Using that initial
condition, the asymptotic Reynolds number for each flow is fixed
by setting the value of x in the forcing term in Eq. (3).

A. Time series

Time series for six different low-Reynolds-number flows are
shown in Figs. 9 and 3. In Fig. 9(a), where the asymptotic
Reynolds number Rez is 4.78 (x = 0.2), the asymptotic (long-time)
flow is time-independent. This happens although the initial
conditions are chaotic. Thus the Reynolds number here appears not
to be high enough to sustain a time-dependent chaotic or periodic
flow; no modes are active. In phase space this type of flow is a
fixed point, as will be discussed in the next section.

For an asymptotic Reynolds number of 6.24 (x = 0.3) the
long-term solution shown in Fig. 9(b) is periodic in time. The
curve has a rather simple shape, although it is not as simple as a
sine wave. As discussed in the next section, this is a limit
cycle in phase space.

The asymptotic flow in Fig. 9(c), which is for a Reynolds
number of 6.72 (x = 0.338), has some parts which appear to repeat,
but it is not periodic. Even after a very long time we were unable
to obtain a complete repeating cycle. In order to see if roundoff

errors could produce that result, we increased those errors by
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several orders of magnitude, but the results were unchanged.
Figure 9(c) by itself does not provide enough information to
characterize the flow in that figure. After we have calculated
phase portraits, Poincaré sections, and Liapunov exponents, we
will be in a better position to characterize the fiow.

Consider next the asymptotic flow in Fig. 9(d), where the
Reynolds number is 6.89 (x = 0.35). At first glance this flow
might appear chaotic because of its complexity. It is, however,
periodic, although the velocity variation within each period is
quite complicated. This complex periodic flow has a period close
to four times that of the simple periodic fiow in Fig. 9(b). We
discovered these two flows (periods 1 and 4) before the nonperiodic
one in Fig. 9(c). It was thought that it would be easy to find a
period 2 flow by using a value of x between 0.3 and 0.35, and
thus to demonstrate period-doubling. However the cases we tried
(x = 0.338 and 0.341), starting either from chaotic initial
conditions or from the period 4 flow in Fig. 9(d), gave nonperiodic
flows similar to that in Fig. 9(c). Thus our route to turbulence
turned out to be more complicated than anticipated.

Finally, by increasing the asymptotic Reynolds number to 6.93
(x = 0.4) we get in Fig. 9(e) what appears to be a chaotic flow,
since it has no apparent pattern. The flow has an appearance

similar to that in Fig. 3 (x = 1) which was already shown to be

chaotic.8
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In summarizing the information obtained from the time series
for the various asymptotic flows, we note that the only flows that
could be identified with reasonable certainty from the time series
alone were the time-independent flow (Fig. 9(a)) and the periodic
flows in Figs. 9(b) and (d). We will be able to get a better
understanding even of those flows from representations yet to be
considered.

B. Phase portraits

The term "phase portrait" as used here refers to a solution
trajectory in the phase space of a flow. Since one cannot readiiy
visualize a space of more than three dimensions, our
representations will be projections of the higher-dimensional
portraits onto two-dimensional planes or three-dimensional volumes
in phase space.

The trajectory in Fig. 10(a), which corresponds to the time
series in Fig. 9(a), shows an initial transient which ends at a
stable fixed point in phase space. The arrow indicates the
direction of increasing time (the direction of motion of the phase
point). Since the velocity components at all points in physical
space are time independent for large times, the phase point
occupies the same position in phase space for all large times.

The projection in Fig. 10¢a) is onto a uj(mw,7v,m) - up(w,m,m)
plane; other projections are similar. This is the simplest
example of an attractor, the trajectory in phase space being

attracted to a single stable boint. Once the phase point arrives
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there it does not leave. As mentioned earlier, volumes in phase
space contract, on the average, in a dissipative system.!3 In
this case the volumes shrink down to a zero-volume
zero-dimensional point. Motion in physical space does not of
course cease but becomes time-independent.

Consider next the periodic phase portrait corresponding to
the time series in Fig. 9(b) (see Figs. 10(b) to (h)). Figures
10(b) and (c) show trajectories projected onto a wuy (9v/8,
21w/16, 23w/16) -~ uy(w,w,w) plane. Comparison of the unconverged
orbit in Fig. 10(b) with the converged one in Fig. 10(c) shows
that the unconverged cur-ve wobbles around (on both sides of) the
converged curve until it finally settles down on the latter. Thus
the trajectory is attracted to a stable limit cycie or periodic
attractor. The fact that the phase point traces the same curve
over and over (after convergence) confirms the periodicity of the
orbit.

The contraction of volumes in phase space for a dissipative
system again manifests itself here. Whereas in Fig. 10¢(a) the
volumes shrink down to a zero-volume zero-dimensional point, for
the periodic attractor considered here they shrink down to a
zero-volume one-dimensional closed line. The coordinate axis
used to plot the line will have the same shape as the line. Thus
although the line itself is one-dimensional, the one-dimensional
coordinate system, or the basis function, may require many

orthogonal dimensions to represent it. The line is, strictly
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speaking, one-dimensional only when used with its own optimum
one-dimensional coordinate system or basis function. Although the
Tine will not cross itself in its optimum coordinate system, it
may cross when projected onto a two-dimensional orthogonal
coordinate system (see Fig. 10(d)).

Additional projections of the periodic attractor onto planes
in phase space are shown in Figs. 10(e) and (f) in order to give
an idea of the variety of curve shapes that can be obtained. Note
that in Fig. 10(f), part of the symmetry present for t =0
(Fig. 1) has returned. (This symmetry is absent in the fully
chaotic flows.) Projections of the orbit onto three-dimensional
volumes in phase space are plotted in Figs. 10(g) and (h).

Phase-portrait projections corresponding to the time series
in Fig. 9(c) are plotted in Figs. 10(i) to (o). This portrait
differs qualitatively from the others shown so far, since it tends
to fill a region of space in most of the two-dimensional
projections. It was found that the longer the running time, the
blacker is the portrait for the projections in Figs. 10(i) to
(n). Thus the trajectory is clearly not periodic, since if it
were, it would be a closed line in all projections. If it were
quasiperiodic (with two independent frequencies), the phase
portrait would lie on a torus. Figure 10(k) resembles a torus in
some respects, but is more complicated. In particular, it has a

knob in the central region.
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The projections in Figs. 10(j), (1), and (m) appear to show a
sheet-like structure. MWhereas for the periodic attractor of
Figs. 10(c) to (h), phase-space volumes shrink down to a
zero-volume line, here they appear to shrink down to a zero-volume
sheet (or sheets). The notch in the projection in Fig. 10(1) is
probably the result of a superposition of sheets. Sheet-like
structures with folds are generic in strange attractors.6 Since
in a chaotic flow there is stretching in at least one direction in
phase space, there must be folding in order to keep the flow
bounded. There appear to be some folds in the projections in
Figs. 10(j), (k), and (m), thus indicating that chaos is probable.
The confused appearance of the trajectories in Figs. 10(i) and (n)
is also indicative of chaos. Further evidence relative to the
classification of this hard-to-classify flow will be considered in
succeeding sections.

Projections of the periodic trajectory corresponding to the
time series in Fig. 9(d) are plotted in Figs. 10(p) to (r).
Initial transients have died out. Because of the very complicated
appearance of the trajectory a cursory look might lead one to
guess that it is chaotic (see also Fig. 9(d)). It is not chaotic,
however, since it is not space filling. No matter how long a time
the solution is continued, there is no blackening of the phase
portrait; the same closed curve is traced over and over, indicating
periodicity of the orbit. Since initial deviations or transients

present in the flow (not shown) die out as the flow is attracted
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to a limiting line, the long-term solution trajectory is a periodic
attractor or limit cycle. The flow appears to have a remarkable
memory in being able to repeat such a complicated orbit. The fact
that such a complicated curve can be retraced is also indicative

of the accuracy of the numerical method. As was the case for the
simple periodic attractor considered earlier, the present periodic
attractor, although much more complicated, shows the shrinking of
phase-space volumes to a zero volume one-dimensional line. The
discussion given there concerning the sense in which the line is
one-dimensional also applies here.

Increasing the Reynolds numbers to those in Figs. 9(e) and 3
we again get (as for Figs. 10¢i) to (m)) space-filling attractors.
Projections of these are plotted in Figs. 10(s) to (v). After
transients have died out, the trajectories are attracted to the
black regions in the plots. These look like astrophysical black
holes. Indeed, these attractors are similar to black holes in
that for large times the phase points cannot leave. A possible
difference is that for somewhat earlier times, the phase points
can cross over the attractors, leaving them momentarily. However
that situation is temporary. After initial transients have
completely died out, the phase points must remain forever on the
attractors. These trajectories appear to be even more chaotic
(have less of a pattern) than those in Figs. 10(i) to (m).

However sheets and folding are less apparent than in the attractors

for the lower Reynolds number in Figs. 10(i) to (m), probably
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because of the higher dimensionality of the attractors for the
higher Reynolds numbers. More will be said about that in section
H.

C. Poincaré sections

Poincaré sections are obtained by plotting the points where
the phase point of a trajectory pierces (with increasing time) one
side of a plane in phase space. The resulting plot has a dimension
one less than that of the corresponding phase portrait. The
lower-dimensional Poincaré section is sometimes easier to
interpret. Here the pierced plane (Poincaré plane) is taken as a
uplm,m,m - uplw,w,v) plane, and points are plotted when u;(9w/8,
21w/16, 23w/16) changes from positive to negative or from negative
to positive. (Fig. 10(g) may aid in visualizing the operation, at
least for the simple periodic case).

For the fixed-point attractor in Fig. 10(a) a Poincaré section
does not exist, since the phase point does not pass through a plane
as time increases. So we go on to the simple periodic attractor of
Figs. 10(b) to (h). For that attractor the Poincaré sections are
points. Figure 11(a) shows two Poincaré sections, one for uj(9rn/8,
21w/16, 23w/16) changing from positive to negative and one for that
coordinate changing from negative to positive as the phase point
passes through a uj(w,w,m) - up(w,r,w) plane. (See also Fig 10(g)
which plots the three coordinates.) Even after the phase point has
pierced the Poincaré plane a large number of times (8 or 10), each

section consists of a single point.
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Consider next some Poincaré sections of the phase portrait for
Figs. 10(i) to (o) (x = 0.338). These are plotted in Figs. 11(b)
and (¢). Some portions of the plots appear to be lines; that tends
to indicate quasiperiodicity of the flow (with two independent
frequencies). However, in other parts of the plots the points are
scattered somewhat randomly with no apparent pattern; that tends to
indicate chaos. Thus the flow has both chaotic and quasiperiodic
features. It is not periodic because longer running times produce
more points on the Poincaré section.

Two Poincaré sections for the complex periodic attractor of
Figs. 10(p) to (r) are plotted in Fig. 11(d). These sections are
similar to those in Fig. 11(a), but because of the complexity of
the attractor of Figs. 10(p) to (v), each section consists of five
points instead of one. As was the case for the simpler periodic
attractor, the number of points does not increase with increasing
running time.

Finally, in Figs. 11(e) to (h), we consider Poincaré sections
for our two highest Reynolds-number flows (x = 0.4 and 1). Phase
portraits for these flows were considered in Figs. 10(s) to (v).
These Poincaré sections are similar to those in Figs. 11(b) and
(¢) insofar as longer running times produce more plotted points.
However they are qualitatively different, since there are no
regions where the points lie along a curve. They tend to fill a
region of space in an apparently random fashion; there is no

evident pattern..
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D. Liapunov exponent

The Liapunov characteristic exponent (or largest Liapunov
exponent if a spectrum of exponents is considered) provides a
definitive way of determining whether or not a flow is chaotic. A
positive Liapunov exponent indicates sensitive dependence on
initial conditions, which in turn is often considered as synonymous
with chaoticity.

The method used here to determine the sensitivity of our
solutions to small changes in initial conditions, and to determine
Liapunov exponents, is similar to one we used previously.8 The
values of wuj at a time after initial transients have died out
are perturbed by small spatially random numbers R, where
-1076 ¢ R < 106 or -10-% < R < 10-%. The perturbations are
applied at each spatial grid point at one time. The distance
between the perturbed and unperturbed solutions at various times

is then calculated from

1/2
2
D= <;E;[Ui,perturbed (xj’t) - Ui,unperturbed (xj’t)] ) (8

where i, which can have values from 1 to 3, indicates different
directional velocity components, and Jj, which can go from 1 to
some number M, indicates different points in physical space. Then
D represents a distance or norm in a 3M-dimensional space. For

M equal to the number of grid points, D is the distance in the
phase space of the discretized system. (Note that the distance

D has the dimensions of a velocity.)
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In reference 8, D was represented by embedding it in one-,
three-, six-, and twelve-dimensional spaces. It was found that
increasing the embedding dimension from three to twelve had little
or no effect on the calculated value of the Liapunov exponent.
Here we adopt six dimensions as giving a sufficiently good
representation of D. That is, we use three velocity components
at each of two points in physical space as the dimensions (M = 2).

Thus, embedding the distance between perturbed and unperturbed

—=1/2
solutions in a six-dimensional space and plotting log (D/ué )

against dimensionless time, we obtain Figs. 12(a) to (¢) for

X = 0.338, 0.4, and 1. The values of log D, on the average,
increase linearly with time, indicating that D increases
exponentially. That is, initially neighboring solutions diverge
exponentially on the average. Thus it appears that we can
characterize these three flows as chaotic.

The fact that the mean slopes of the distance-evolution curves
are constant over a considerable range also allows us to use our
results to obtain an estimate of the Liapunov characteristic
exponent. The Liapunov characteristic exponent o (for times after

initial transients have died out) is defined as®

. 1 D(t)
o= 1im (= In=—~ , (9)
taa <t> {0
D(0)»0

where the D(t) are values of distance between initially
neighboring solutions that might be obtained from Fig. 12.

However, if the values of D were obtained from the wavy curves
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in Fig. 12, we would have to go to very large times in order to
obtain a reasonable estimate for o. This would take us out of
the region of exponential growth of D, unless D(0) were very
small (probably below the computer noise level). One way of
getting around this difficulty is to use a renormalization
procedure.6

For our purposes it seems that, since the mean slopes of the
distance evolution curves in Fig. 12 are constant over a
considerable range, the best procedure is to replace the wavy
curves by straight lines through them. Then Eq. (9) is replaced by

o = [1n (Dp/Dal/(t - ty), (10

where the values of Dy and Dy are read from the straight line
in each figure at times t and ty, respectively. The straight
line in each figure is drawn so that its mean square deviation
from the wavy curve is a minimum; this procedure should give a
good estimate for o. The values of dimensionless o so obtained

for Figs. 12(¢a) to (¢) are, respectively,

(Xé/v>o ~0.12, 0.35. and 2.7. an

The value 2.7 agrees with that obtained for the same flow (but for
a different time of perturbation and different embedding
dimension) in reference 8. The Liapunov exponents in Eg. (11)
give us a measure of fhe mean exponential rate of divergence of
two initially neighboring solutions, or of the chaoticity of the

flows. The important point is that o s positive, indicating
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that these three flows are chaotic.® It is noted that as the
Reynolds number increases o increases (for constant xg and
v), or the flows become more chaotic.

Plots of dimensionless D versus t* for our two periodic
flows are given in Figs. 12(d) and (e). (Note two lost-data gaps
in the Fig. 12(e) curve.) These plots are qualitatively different
from those for chaotic flows. If they were not, of course, our
method for calculating Liapunov exponents would be in error.
Whereas D for chaotic flow increases exponentially (on the
average) for about four orders of magnitude until it is of the
same order as wuj, D for the periodic flows, on the average,
shows no tendency to increase exponentially. Thus the Liapunov
exponent does not show a tendency to be positive, as of course it
should not, since the flow is not chaotic. Theoretically the
largest Liapunov exponent, the one associated with perturbations
along a trajectory, should be zero for a periodic attractor.!4

The following simpie argument shows that the largest Liapunov
exponent for a limit cycle is zero. A limit cycle is stable, so
the flow must return to the same periodic attractor after a
perturbation. That is, the trajectory, a long time after
perturbation, must occupy the same points in phase space as it did
before perturbation. So the only possible difference between the
perturbed and unperturbed trajectories is that there may be a
phase difference; although the trajectory, a long time after

perturbation, must occupy the same points in phase space as does
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the unperturbed trajectory, it may do so at different times. A
phase difference is allowable because our dynamical system is
autonomous; time does not appear on the right side of Eq. (1).
Since the velocity components are all periodic in time, D will be
periodic, as in Figs. 12(f) and (g). There the limit cycle is
perturbed along its trajectory by introducing a small phase
difference At; the distance between neighboring solutions is

calculated from

1/2

2
Donase = (i j[u1<xj,t + AL - ui(xj,t)] ) (12)

in place of Eq. (8). Thus the average D over a long time has
zero slope, so that for a periodic flow, the largest Liapunov
exponent (associated with perturbations along the trajectory) is
zero. Other Liapunov exponents (associated with perturbations
normal to the trajectory) are negative, since the flow is
attracted to the Timit cycle. Note that Figs. 12(f) and (g) do
not by themselves, without the rest of the above argument, show
that the largest Liapunov exponent is Zero. However the wavy
curves in Figs. 12(d) and (e) do approach those in Figs. 12(f) and
(g) respectively for very long times. In particular the
wavy-curve shape in Fig. 12(g) is nearly identical with that near
the end of the curve in Fig. 12¢e). So the use of Eq. (12) is a
way of producing the asymptotic D's immediately when it is known

that the asymptotic D's are the result of a phase difference, or
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of a perturbation along the trajectory. The effects of
perturbations normal to the trajectory are absent in Figs. 12(f)
and (g).
E. Characterization of the flow for x = 0.338

The fact that the flows for Figs. 12(b) and (c) are chaotic
might be expected from the lack of a pattern in the time series,
phase portraits, and Poincaré sections for those flows. On the
other hand the flow for Fig. 12(a) (x = 0.338) has both chaotic
and quasiperiodic features, as shown particularly by the Poincaré
sections in Figs. 11(b) and (¢). (A flow for x = 0.341 (not
shown) also has those features.) Because of the positive Liapunov
exponent of the flow for x = 0.338 in Fig. 12(a) we classify that
flow as chaotic. But we should differentiate between the
x = 0.338 flow (Figs. 11(b) and (c)) and the flows for x = 0.4 and
1 (Figs. 11(e) to (h)) because of the qualitative difference
between their Poincaré sections. Since the Poincaré sections for
the x = 0.338 flow do not show a complete lack of pattern, we call
it weakly chaotic to distinguish it from the x = 0.4 and 1 flows
which we call fully chaotic or simply chaotic.

F. Chaotic versus turbulent flows

This leads us to a possible distinction between flows which
are chaotic and those which, in addition, might be called
turbulent. Perhaps one should reserve the term "turbulent" for

flows which have both a positive Liapunov exponent and Poincaré
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sections with a lack of pattern, as have those for x = 0.4 and
1. On the other hand chaotic flows (albeit weakly chaotic) might
have only a positive Liapunov exponent.

Another characteristic which is often given as indicative of
turbulence is a negative skewness factor S of the velocity
derivative, where usually -1 < S < 0.12 However, for the
time-dependent flows considered here, both turbulent and
nonturbulent, the skewness factor did not vary significantly from
that given in Eq. (7). Even for the fixed-point flow (Figs. 9(a)
and 10¢a)) the value of S was about -0.25. Thus although a
negative S s necessary for the presence of turbulence, it is
certainly not a sufficient indicator. A negative S in fact
seems to be more an indicator of nonlinearity than of turbulence.
A1l of the flows here are highly nonlinear.

G. Power spectra

Power spectra give the distribution with frequency of the
energy in a flow. We obtain the spectra by computing the fast
Fourier transforms of the time series for the velocity components.
The squares of the absolute values of those transforms are then
plotted against dimensionless frequency. The results are given in
Fig. 13.

Two types of spectra are indicated-discrete for the periodic
flows and continuous for the chaotic ones. However the spectra do
not appear able to distinguish qualitatively between the weakly

chaotic (Fig. 13(b)) and the fully chaotic flows (Figs. 13(d) and
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(e)). In that respect they are less sensitive indicators than are
the Poincaré sections. If one considers the discrete and
continuous spectra separately, then higher frequency components
become excited as the Reynolds number increases (as x increases).
In the case of the discrete spectra, the simple periodic flow
(Fig. 13(a)) requires only four spectral components to represent
up, whereas the much more complex periodic flow (Fig. 13(c))
requires 36 nonnegligible components. In both cases the
frequencies of the components are related to one another as ratios
of integers (one fundamental frequency in each case).
H. Dimensions of the attractors

As a final characterization of our Navier-Stokes flows, we
consider the dimensions of the attractors on which the flows
reside. The dimension of a space gives, in general, the number of
quantities required to specify the position of a point in the
space; e.g., one, two, or three coordinates are respectively
required to specify a point in a one-, two-, or three-dimensional
physical space. The same applies to an n-dimensional phase
space, or to an attractor which is a portion of the phase space.
The attractor is generally of lower dimension than that of the
phase space because of the shrinking of volumes in the phase space
of a dissipative system. It is partly this possibility of a
decreased dimension of the attractor, and consequent simplification
of the problem (in principle), which makes calculation of dimension

an interesting pursuit. The dimension can be considered the lower
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bound on the number of essential variables needed to describe the
dynamics of a system.15 Unfortunately it is usually difficult to
obtain reliable estimates of that quantity.

As mentioned in section III.B, the dimensions of our
fixed-point and periodic attractors are respectively zero and one;
a point in any space is zero-dimensional and a closed line, no
matter how complicated its shape, is one-dimensional if the optimum
coordinate system or basis function is used (see discussion in
section IIL.B).

One might question why more than one spectral component is
required in Figs. 13(a) and (c) for the representation of
one-dimensional periodic attractors. However the need for more
than one component in those representations means only that the
basis functions used there, sines and cosines, are not optimum for
those cases. In the case of our complex periodic flow (Fig. 13(¢))
it would be necessary to use an extremely complicated basis
function for one-spectral-component representation-most likely a
basis function represented numerically rather than by an analytical
function.

We also attempted to calculate the pointwise dimensions of our
chaotic or strange attractors.!3.16 In that attempt we have not
been able to obtain a long enough time series for the dimension to
become independent of time-series length. Thus, all we can say
with certainty is that the dimension must be greater than 2; if it
were not, trajectories for our chaotic flows would cross in phase

space. They cannot cross for an autonomous system because if they
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did, there would be more than one trajectory for the same
conditions (at the point where the trajectories cross), and the
problem would not be deterministic.

One might expect that for our weakly chaotic flow the
dimension would be only slightly greater than 2 because apparent
folding can be seen in the phase portrait (Figs. 10(j) and (m)); if
the attractor were many-dimensional, stretching and folding would
occur in many directions and, because of the resulting confusion,
could not be discerned in a two-dimensional plot. That is
apparently what happens for the fully chaotic flows (Figs. 10(s)
to (v)). There the dimension must be significantly greater than
2; stretching and folding, although certainly present, is
many-dimensional, so that the result is a confused appearance of
the phase portrait. However, even there the dimension of the
attractdr should be limited by the overall shrinkage of volumes in

phase space.



IV. TURBULENT ENERGY TRANSFER AND TURBULENT DISSIPATION

Thus far we have used only the unaveraged equations of motion,
those being the most useful for analyzing turbulence by using tools
of nonlinear dynamics. On the other hand, for discussing the
transfer of energy between wavenumbers or between directional
components, or turbulent dissipation, averaged or moment equations
have traditionally been used.! Here we will use both averaged and
unaveraged equations. Spectral transfer by nonlinear self-
interaction and by the interaction of turbulence with a mean
velocity gradient, as well as directional transfer of energy, and
turbulent dissipation, are central to the nature of turbulence and
so are discussed here.

First we show that energy transfer and dissipation are
generic in Navier-Stokes turbulence, where the turbulence can be
statistically homogeneous or inhomogeneous. Turbulence must be
dissipative, since the Navier-Stokes equations form a dissipative
system. But it requires some analysis to show that energy
transfer, particularly spectral transfer in nonhomogeneous
turbulence, is generic.!’

We write the incompressible Navier-Stokes equation at two
points P and P' separated by the vector r (see Fig. 14). If
we break the instantaneous velocity and pressure into mean and
fluctuating components, we can construct the following two-point

correlation equation:!7
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au.u. au, au! u,u: du. u!
—ULJ=-U—DT——‘-uu'—a,1-u Ly =
at k™3 axk i axk k axk k axk
—y — 2—— 2=
__.—a—- u.u u‘ —_@'"U u'u' __.]. _ap_uj.+ auip + v a UiUJ + a U‘,Ul
CLN k] axk ik p axi axj axkaxk axkax' ’
(13)

where the subscripts can take on the values 1, 2, or 3, and a
repeated subscript in a term indicates a summation on the
subscript. The unprimed quantities are measured at point P, and
the primed quantities at P', as in Fig. 14. The overbar
designates an averaged quantity. The quantity wuj 1is a
fluctuating velocity component (uj = 0), Ujy 1is a mean velocity
component, p is the f]uctuating pressure, p s the density, v
is the kinematic viscosity, xj 1is a space coordinate, and t s

the time. Referring to Fig. 14,

from which
Xp = nx' + (1 - mx.
In subscript notation,
Tk = Xk - Xk, (14
and
(xdn = nxg + (1 - mxg, (15)
where n is a number between O and 1. By using Eqs. (14) and

(15) and the rules for partial differentiation, we obtain
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Figure 14. - Vector configuration for two-point correlation equation.
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3 B d
= =l -nN) =&=——— - 57—, 6)
axk a(xk)n ark
and
) d 3
— =N + o . Qan
axk a(xk)n ark

Equations (16) and (17) are used to transform, except in the
last two terms, the independent variables in Eq. (13) from xg and

X, to (xgd)p and rg:

au.u!
_u___a_< T ->_ oo 9 7
T TG I b S W - Y2 ar, 1!
) ———r —_—
- a(xk)n [(1 - n)uiukuj +n Uiujuk]
[ \ 3 — 1 {3pu: + du,p'
- 11 =y, + nU ] u.u: + P,. - — i i
K K a(xk)n 7] ij p axi axﬁ
azuiui azuiui
+ v + — (18
axkaxk axkaxk

where the two terms containing d/3(xy)p are, respectively, the
diffusion and convection terms, Pjy 1is the production term, and
the last two terms are respectively the pressure and dissipative
terms.

Consider the first term on the right side of Eg. (18), the

turbulence self-interaction term. HWe can write

@

_9_ T Ty = i
_ ark (uiuju - uiukuj) -./r Tij(x,xn)exp(lx r)dg, 19
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where Tjj 1is the three-dimensional Fourier transform of

—(a/ark)(uiuiuk - Ui“kui)’ « is the wavenumber vector, and

de = dx]dxzdn3. As in a homogeneous turbulent velocity field,

a(uiuju' - “i”k“ﬂ)/ark for an inhomogeneous field should be
absolutely integrable over r in order for its Fourier transform
to exist. Moreover, if a wall is present in the flow, a finite
Fourier transform with respect to the component of r normal to
the wall should be used. We want to determine whether Tiy can
be interpreted as a spectral-transfer term. To this end we solve
Egs. (17) and (16) for 3/drk and write Eq. (19) as

i _Q_ [T _a__ |
/ Tij(x,xn>exp(1x-r)dx = - ark Uiujuk + ark uiukuj

3 ] —_— 3 3 —_—
= (‘ axp * " a<xk)n) Ujugu + (‘ ax, © o™ a<xk>n> Ul Uy

au! _—
- - U _.l - t _a_ ____§_ 1yt - ]
= Us Uy axﬁ uj axk usu + a(xk)n (nuiujuk + (1 n)uiukuj) (20)

where the continuity condition dug/dxgk = O and the fact that
quantities at one point are independent of the position of the

other point were used. Equation (20) becomes, for r = 0,

U.U.Uk=o, 21
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since, for r =0, x, = x = (x)p. Therefore, even for a general
inhomogeneous turbulence, Tjj, when integrated over all wavenumbers,
gives zero contribution to the rate of change of ujuj (see Egqs. (18)
and (19)). Thus, Tjj(x,xp) can only transfer Fourier components of
ujuj (energy for i=j) from one part of wavenumber space to another.
The second term on the right side of Eq. (18), in contrast
with the first (which produces turbulence self-interaction), is
associated with the interaction of the turbulence with the mean

flow. However, both terms are related to transfer terms. We can

write

. 8 T T e K-
-(Uk - Uk) ark uiuj = .[ Tij(x,xn)exp(1n rdx, (22)

L 3 ——
where Tij(n,xn) is the Fourier transform of -(Uk - Uk)(a/ark)uiuj'

Letting r = 0, Eq. (22) becomes

* —
J. Tij(r,xn)dx =0 (23

since, for r =0, Uk = Uk' Thus, as in the case of Tij

T;j(x,xn) gives zero total contribution to the rate of the change
of Uiuj (energy for i = j) and can only alter the distribution in
wavenumber space of contributions to Ui“j' We first interpreted

and calculated T?j(k) as a transfer term for homogeneous>turbulence

(K,Xn),

in reference 18. (Cratyat‘9 also discusses, in a general way, the
modification of homogeneous turbulence by uniform mean gradients,
but does not show that T;j is specifically a spectral-transfer
term.)
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The first two terms on the right side of Eq. (18) appear to
be the only ones associated with spectral transfer. The other
terms are interpretable as production, convection, directional-
transfer, diffusion, and dissipation terms. In particular the
next to the last term is the directional-transfer term; using the
continuity equation at the points P and P' and setting i =]
shows that the term gives zero contribution to the rate of change
of E?ﬂ?, but it can transfer energy among the directional
components of uUjuj (among ujuj, Upuz, and u3u3). Finally the
last term, which is proportional to the viscosity, is the
dissipation term.

Next we want to show how spectral transfer can take place by
using results from simple analyses. For our purposes we consider
the simplest closure scheme, the correlation-term-discard closure.
In using that systematic procedure the infinite set of multipoint
correlation equations is made determinate by neglecting the
highest-order terms in the highest-order equations
considered.18,20-22

A. Homogeneous turbulence with no mean gradients

For this case we first use the two-point equation (26) from
reference 20. That equation was obtained by neglecting the
quadrup]e-cdrrelation terms in the three-point correlation
equation. Thus, we get, for the approach to the final period of

decay (for weak turbulence),

Q

E

I

¢ 2u%E = T, (24)

Q.
—t
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where
T(k) = f Pli,k')dx' 25
0
and where
Bo 5.7 7.5 2 2
Plk,k') = - E;?E—:—¥87 («“k'" - k") {expl-2v(t - tO)(K - k' + k']

- exp [-2u(t -t + ket v D) (26)
The quantity E is the energy spectrum function, related to the

total turbulent energy Uiui/z by

] AT J‘ ECk)dx, 27
0

2

c

and T(x) is the energy transfer function, which equals T(x)/2
integrated over all directions (see Eq. (19)). The term -2vk2E
is the dissipation term. The quantities (g and tgo are

constants determined by the initial conditions. Then, carrying

out the integration in Eq. (25) gives

172 6
(w/2) 2 "
T=- "5 B exp [-3/2c"v(t - tHI105S ———77
(t - tg)
8 10 12
e 45— _ 19 -3 , (28)
(t - to>7/2 (t - t0)5/2 (t - t0)3/2

and integration of Eq. (24) gives, with a particular set of initial

conditions,20
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4 12
E= -9 axp [-2wk2(t - £0] - =52 exp [-3/2650(t - t)] -
= T3y EXP 0 756v 0

15Y2 0 1292 .8 \ 1¥2 k10

v7/2 (t - t )7/2 v5/2 (t - t )5/2 3\)3/2 (t - t )3/2
0 0 0
1/2
16¥2 k2 32 13 [ [Vt - to)
+ VB 73 -3 Fix — (29)
3 (t - to)
where
W
Flw) = exp(—mz) s exp (xz)dx,
0
1/2
- K[v(t - to)]
2 ]

and where Jg 1is a constant determined by the initial conditions.
Values of F(w) are tabulated by Miller and Gordon.23 The first
term on the right side of Eq. (29) is the usual expression for E
in the final period of decay. The last term is the contribution
to E due to energy transfer.

Figure 15 shows the evolution of calculated energy spectra,
where the dimensionless E* = Jo!/3e/v8/3 is plotted against
k* = Jo!/3c/v2/3.  The wavenumber « has the dimension 1/length
and can be considered as the reciprocal of an eddy size. Large
wavenumbers therefore correspond to small eddies and small
wavenumbers, to large eddies. Equation (27) shows that E
represents the distribution of contributions to the total energy

from various wave numbers or eddy sizes. As time increases,the
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Figure 15. - Evolution of calculated energy spectra with t.= (v7/3/u2/3)1. Bgm v 585§ = 1.55 x 10
tg= (vI31023) 1g= -6.33 x 16% e before final period ((EQ. (28)), m= == == final period.

1
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bulk of the energy moves to smaller wavenumbers or to larger
eddies. The high velocity gradients and, consequently, high shear
stresses occurring in the smaller eddies cause them to dissipate
more rapidly than the larger ones. The form of the dissipation
term -2ve?E  in Eq. (24) also shows that the dissipation should be
higher at the higher wavenumbers. The viscous dissipation thus
produces a sink for the energy at the higher wavenumbers.

Also given in Fig. 15 is a comparison between spectra for
times before the final period as obtained from Eq. (29), and those
for the final period of decay obtained by neglecting the terms in
brackets in Eq. (29). The difference is, of course, caused by the
transfer of energy from low wavenumbers to higher ones by the
transfer term T in Eq. (24). The energy transferred tends to
fill the sink produced by dissipation at the higher wavenumbers.
That causes the slopes on the high wavenumber sides of the spectra
to be more gradual than in the final period. The effect is also
observed experimentally.‘ |

The effect of the transfer term on the energy spectrum might
be summarized by saying that it excites the higher wavenumber
regions of the spectrum by transferring energy into those regions.
The high wavenumber portion of the spectrum is thus determined
primarily by inertia effects, whereas the low wavenumber portion
is determined by the viscous terms in the equations. This may
seem to contradict what we said before, where we mentioned that

viscous dissipation is highest in the high wavenumber region.
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However, the small eddies owe their existence in the first place
to the transfer of energy into that region, that is, to inertia
effects.

Figure 16 shows the dimensionless energy transfer term T*
(see Eq. (24)) plotted against «* for several values of
te - to*. The transfer term gives the net energy transfer into a
wavenumber band from all other wavenumbers (see Eq. (25)). The
curves indicate net energy loss from energy bands at low
wavenumbers and an energy. gain to those at higher wavenumbers.

The total area under each curve is zero, in agreement with

Eq. (21), thus indicating that the total contribution of T to
dujuj/dt is zero (see Egs. (24) and (27)). It should be
emphasized that T represents a difference between the energy
flowing into and out of a wavenumber band. The actual energy
transfer at a point where T s low or zero may be quite high, as
will be shown.

Equation (25) shows that P(k,x') gives the distribution of
contributions to T(«x) from various wavenumbers «'. According to
the present analysis P(x,k') is given by Eq. (26).

In Fig. 17 we plot dimensionless P against «'/k for values
of «klv(t - to)]”2 corresponding to T a maximum and to T = O.
The curves indicate that the energy entering a wavenumber band at
k comes from a range of wavenumbers «' (or eddy sizes) rather
than primarily from neighboring wavenumbers. Similarly the energy

passes to a range of wavenumbers. Thus the energy in general is
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Figure 16. - Variation of dimensionless energy transter term T * = Jg T/(vwso) with x* andt, -15.
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Figure 17. - Plots showing contributions to energy transfer at x from various wave numbers x. O— —t-
Energy transfers (jumps) from several x to x, or from x (o several X' (a) T, a maximum; (b) T=0.
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transported between wavenumber bands that are separated. This
transport might occur by a breaking up of large eddies into smaller
ones. The positive area under each curve corresponds to the total
energy entering a wavenumber band at «, the negative area to the
total energy leaving. The curve for T = 0 indicates a
considerable amount of energy entering and leaving at «, although
the net energy gain is zero.

Figures 15 to 17 give a picture of the energy transfer in the
weak turbulence before the final period of decay. Figure 18 gives
the results of an approximate calculation?4 of contributions
P(k,k') to experimental energy transfer T(x).25 The turbulence
is stronger than that before the final period. Still stronger
turbulence?4 gives similar results. We note that the energy for
this experimentally based calculation jumps much greater spans of
k'/x than occur in Fig. 17. Contributions to the net energy
transfer at « are distributed over a wide range of wavenumbers
x'. If the energy transfer were primarily local, P(x,x') would be
significantly different from zero only when «'/x 1is close to
one. In Fig. 18, where the energy entering a wavenumber region
(positive P) dominates that leaving (negative P), much of the
energy entering comes from wavenumbers «' that are about an
order of magnitude lower than «. On the other hand, when the
dominant transfer is negative (not shown) much of the energy is

passed on (jumps) to large «'.24
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The tendency of the energy to jump between wavenumber regions
that are separated appears to be in accord with the idea! that the
turbulence tends to form concentrated regions of large velocity
gradients. This tendency occurs even at low Reynolds numbers (see
Fig. 5). Thus, when a low wavenumber eddy becomes unstable and
forms a region of large velocity gradients, there will be a
transfer of energy from a low to much higher wavenumbers.

It seems possible that the universal equilibrium theory]
might apply in the presence of a rather high degree of nonlocalness
of the spectral energy transfer, if the Reynolds number of the
turbulence is very high. In that case, the energy spectrum extends
over many decades of wavenumbers. Thus, there could be a cascade
in which much of the energy is passed from low to high wavenumbers
about a decade at a time. However the turbulence Reynolds number
required to make the small eddies independent of the large ones
would have to be larger than if the energy transfer were more
local.

As a final note on nonlinear spectral transfer by turbulence
self-interaction, we show that the production of small eddies by
that mechanism can actually take place. We return to the
unaveraged Navier-Stokes equations (Egs. (1) and (2)), but omit
the forcing term Fj, so that we have a decaying system. MWe again
use Egs. (3) and (4) for the initial conditions at t = 0. Those
conditions are nonturbulent and have a single length scale. By

solving Eqs. (1) and (2) numerically for several initial Reynolds
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numbers,’ averaging Uju; over space to get Ujuj as a function

of time, and calculating the microscale A from!

u.ud.
Mooy —1 (30)
duiui/dt

we obtain Fig. 19. The microscale is a measure of the size of the

small eddies in the turbulence, and is defined by!

du, adu; usu
B 31
0 %y 1y

ax, dx

In Fig. 19 the microscale is normalized by its initial value
and plotted against dimensionless time for several initial Reynolds
numbers. Note that no closure assumption has been made in obtaining
Fig. 19. As the Reynolds number increases, the small-scale
structure becomes finer. The microscale decreases with increasing
time until the fluctuation level (inertial effect) is low enough
so that viscous forces prevent a further decrease. After A
decreases to a minimum it begins to grow. <(Results for coarser
and finer grids were not qualitatively different from these.) The
increase of X at Tater times is due to the selective annihilation
of eddies by viscosity, the small eddies being the first to go.
Thus, at large times, only the big eddies remain. It is this
period of increasing A, in which inertial (transfer) and viscous
effects interact, that is generally observed experimentally in

grid-generated turbulence (turbulence observed downstream of a grid
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Figure 19. - Calculated evolution of microscale of velocity fluctuations (normalized by initial value) for
various initial Reynolds numbers. No mean shear. Exirapolated to zero mesh size.
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of wires or bars whose plane is normal to the flow in a wind
tunnel). The increases of X\ with time observed experimentally]
are generally of the same order as those in Fig. 19 (doubling the
time increases A by a factor of about 1.5).

The early period, in which X\ decreases with time, is of
particular interest as illustrative of interwavenumber energy
transfer. In order to generate the small-scale structure,
turbulent energy must be transferred from big eddies to small ones.

Figure 20 shows the calculated evolution of mean-square velocity
fluctuations EE = G;E = ;;2 = u32 for a series of initial Reynolds
numbers. As the Reynolds number increases (v and initial Tength
scale xg held constant), the rate of decay of ;E increases
sharply, as in experimental turbulent flows.26 This can be
attributed to the nonlinear excitation of small-scale turbulent
fluctuations at the higher Reynolds numbers. The high shear
stresses between the small eddies cause a rapid decay.

B. Homogeneous turbulence with a mean shear

In order to study the nature of turbulence with shear, we
again consider the simplest possible case. Considering the
two-point moment equations for U;Ug and for the pressure-velocity
correlations,!8 specializing those equations for homogeneous
turbulence with a uniform shear, closing the system of equations by

negiecting the triple-correlation terms, and taking their Fourier

transforms, we get
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Figure 20. - Calculated evolution of microscale of velocily fluctuations (normalized by Initlal value) for
various initial Reynolds numbers. No mean shear. u2 = u% - ug- ug . Extrapolated 10 zero
mesh size.
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where ¢y s the Fourier transform of J{Eg given by

3

— ix-r(
uiuj\:) = J° @iJ(K)e ix, (33)

x 1is the wavevector, r 1is the vector from point P to P', Uy
is a fluctuating velocity component. and dU]/dx2 is the mean
velocity gradient in shear. Solution of Eq. (32) for initially

isotropic turbulence gives, for P

o - JO{K$ + [Kz + aK](t - to)]2 + Kg}z
1 1202
. exp {-2v(t - t0>[x2 b arpey(t - ) + %azxf<t - t0>21}
2 K§K2
7 : R RN P A
Ky o+ [KZ + aK](t - to)] + K3 K](K] + K3)
R Ky RELII aK](t - to) 2
tan ?_E—___E—T7§ - tan 3 RV , (34)
Ky o+ K3) (Kl + K3)

where a = dUj/dxp, and Jg 1is a constant determined by the
initial conditions. The spectral transfer term in Eq. (32) is, for
Piis x]a¢1i/ax2dU1/dx2. If we integrate it over all directions in

Fourier space to get Tjj, we obtain the dimensionltess transfer
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spectrum for shear plotted in Fig. 21. As required by Eq. (23),
the net area under each curve is zero, so that Tjj gives zero
contribution to the rate of change of ujui, it can only transfer
energy from one part of wavenumber space to another.

The curves in Fig. 21 are predominately negative for small
wavenumbers and positive for large ones, so that, in general,
energy is transferred from small wavenumbers to large ones. Thus,
the effect here is similar to that of the transfer term due to
triple correlations in Fig. 16. The transfer affects the shape of
the energy spectra (not shown) by exciting the higher wavenumber
regions of those spectra, as is the case for the transfer due to
triple correlations in Fig. 15.

A natural explanation of the transfer of energy to the high
wavenumber regions by the mean velocity gradient would be that the
velocity gradient stretches the vortex lines associated with the
turbulence. This picture might also explain the small amount of
reverse transfer shown in Fig. 21 for low wavenumbers at small
velocity gradients, since the velocity gradient should be able to
compress, as well as stretch, the vortex lines depending on how
they are oriented. For large gradients the vortex lines would
tend to all be oriented the same way, such that they are all
stretched; in that case there is no reverse transfer. The reverse
transfer at small shear might explain why experiments sometimes
show turbulence scales larger than those associated with the

turbulence generators.2’
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Figure 21. - Dimensionless specira of transfer term due to mean velocity gradient in Equation (32).
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An alternative explanation of the energy transfer between
wavenumbers would be that the large eddies break up into smaller
ones. That mechanism seems to give a natural explanation for the
suddenness of turbulent mixing considered in section V, but may
not easily explain the reverse transfer observed in Fig. 21. Of
course, there is no reason why the stretching or compressing of
vortex lines could not be sudden.

As in the last section, we consider turbulent solutions of
the unaveraged Navier-Stokes equations in attempting to show the
actual effect on turbulence of certain processes. Here we again
solve numerically Egs. (1) and (2) without the forcing term, but
this time we impose a uniform mean shear on the turbulence.

In Figs. 22 and 23 we show the effect on homogeneous
turbulence of suddenly removing the mean shear. Figure 22 shows
that the shear produces considerable anisotropy, although it was
initially isotropic at t = 0. Upon removal of the mean shear the

turbulence quickly returns to isotropy. That is, the three {

components of u12 quickly equalize. The pressure-velocity-
gradient correlations in Eq. (18) are thus successful in
transferring energy among the various directional components in
such a way that equality of the J;E is produced (see also the
equivalent term in Eq. (32), the last term proportional to

duy/dxp). We note that u22 continues to increase for a short

time after the shear is removed, probably because it receives
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Figure 23. - Effect of removal of uniform shear on structure of turbulence. U
grid points. Starred quantiies nondimensionalized by xo and v.
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energy from both ;TEV and E;E. In addition to equalization of
the three directional components of E;E: removal of the mean
shear is found to destroy the turbulent shear stress -pﬁ?ﬁf.

Figure 23 gives a comparison of the evolution of wuy before
and after removal of the mean shear. The mean shear produces a
small-scale structure in the turbulence which disappears almost
immediately when dUj/dx» goes to zero, evidently because of the
large fluctuating shear stresses between the small-scale eddies.

Figure 23 shows, in a particularly graphic manner, the
effectiveness of the mean-gradient transfer term «y3¢j4/dx2dUy/dx;
in Eq. (32) in producing small-scale turbulent structure. HWe first
showed the existence of, and calculated, a mean-gradient transfer
term almost three decades ago.!8 The results shown here/ are a

graphic demonstration of the effectiveness of that term in

producing a small-scale structure in turbulence.



V. THE SUDDENNESS OF TURBULENT MIXING

A fundamental question about the nature of turbulence concerns
how turbulent mixing takes place. Here we consider the
instantaneous turbulent mixing which occurs in the presence of
mean velocity and/or temperature gradients.

Consider first the effect of turbulence on the shear stress
and/or heat transfer. To do that, split the velocity and pressure
in Eq. (1) into mean and fluctuating components (Reynolds
decomposition) and take average values. This gives, for Fyj = 0,/

2, Wy g

o -l — % 3
P 3t PYx ox, T A T oax

au; .
[pv 5;; - pU UL ] (35
where U; and P are mean quantities and the wuj are now
fluctuating components (uj = 0). (In Eq. (1) the uj represented
mean plus fluctuating components.) Equation (35) has the same form
as Eq. (1), but the viscous stress pvaUj/dxx is augmented by the
term -pujug, where the overbar designates an averaged value. Thus
-pUjuk increases the effective stress and is called the turbulent
or Reynolds stress. A similar operation on the unaveraged energy
equation shows that turbulence augments the heat transfer by the
term —pC{UE, where < s the turbulent temperature fluctuation
(t = 0), and C 1is the specific heat. These observations apply
whether the turbulence is homogeneous or inhomogeneous.

We note that the expression for the turbulent stress

corresponds exactly with that for the molecular stress obtained in
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the kinetic theory of gases.23 It is only necessary to replace
the macroscopic velocities in -pujux by molecular velocities. A
similar correspondence exists in the expressions for the turbulent
and molecular heat transfer.

Let us see what the presence of the turbulent stress and heat
transfer terms in the equations for mean flow and heat transfer
implies about the instantaneous turbulent mixing. Instantaneous
mixing refers here to the mixing one would see in a snapshot taken
at a particular time.

Note first what would happen if the spatial pattern of
instantaneous turbulent mixing were uniform, or nearly so. If
that were the case, a portion of fluid as it moves transversely in
mean velocity and temperature gradients (mean velocity in the
xyj-direction) would have a uniform tendency (because of uniform
mixing) to assume the mean xj-momentum and temperature of the
surrounding fluid at each point along its path. That tendency
would increase with increasing turbulence intensity or Reynolds
number, because small-scale motions become excited with increasing
turbulence intensity (see Section IV), and so the turbulent mixing
(average or instantaneous) increases. (Note that turbulent mixing
takes place most efficiently by small-scale motions, since those
provide the most intimate contact of the fluid entering a region
with that already there.)

Thus if the instantaneous turbulent mixing were spatially

uniform, the tendency of a portion of fluid to assume the mean
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x1-momentum and temperature of the surrounding fluid at each point
as it moves transversely would increase with increasing turbulence
intensity. That would, however, cause the fluctuations from the
mean, u; and =t fin the turbulent stress pﬁ?ﬂg and heat transfer
pC{UE to decrease in magnitude with increasing turbulence
intensity or Reynolds number. The stress component pﬁ_f would
then decrease. But that trend is unphysical and does not occur.
In fact, as might be expected, the opposite trend occurs; as
turbulence intensity (ujuj/3)1/2 or Reynolds number increases,
u12 increases.29

The instantaneous turbulent mixing therefore cannot be
spatially uniform, or nearly so, as assumed in obtaining the above
unphysical trend. There must be regions of relative quiescence
if xy-momentum and heat are to be transferred turbulently at high
turbulence intensities. But in that case there must also be regions
where the instantaneous mixing is relatively intense and localized,
since that is the only way the average mixing could be high for
high turbulence intensities, when regions of quiescence are
present. So the only sensible assumption about the instantaneous
mixing is that it is small except in localized regions, where it
is intense. Then the above unphysical trends do not occur, since
the tendency of a portion of fluid, as it travels transversely, to
assume the mean xj-momentum and temperature of the surrounding

fluid is sudden and is confined to localized regions. This is

particularly true for high turbulence intensities or Reynolds
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numbers. There the fluctuations rrom the mean can be large for
most times and spatial positions. Thus, although fluid turbulence
occurs in a continuum, changes in the momentum and temperature of
a moving portion of fluid tend to be sudden and localized.

Our observation here concerning the suddenness of turbulent
mixing seems to be congruous with what we said in section IV about
the transfer of energy between wavenumber bands that are widely
separated. Thus, if an eddy suddenly mixes with the surrounding
fluid, as was found to occur in the present section, that would
most likely, for efficient mixing, take place by a sudden breakup
or shattering of the large eddy into many smaller ones at the point
of mixing, with a consequent transfer of energy from a small
wavenumber band to much larger ones. As mentioned earlier,
turbulent mixing takes place most efficiently by small-scale
motions, since those provide the most intimate contact of the fluid
entering a region with that already there. Thus, the transfer of
energy associated with the presence of mean gradients, like that
due to turbulence self-interaction, tends to take place between
wavenumber bands that are considerably separated.

The localness or suddeness of the turbulent transfer
considered in this section also seems to be in agreement with the
concept of bursting coherent structures in shear flow near a wall.
Much work has recently been done on that phenomenon.30

Although our purpose here is to consider the nature of

turbulent mixing, rather than to lend credence to any particular
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expressions for the turbulent shear stress or heat transfer, it is
of interest that our present result is in agreement with an
assumption of Prandtl's mixing-length theory.3! According to the
mixing-length hypothesis a certain suddenness in the turbulent
mixing must occur for turbulent transfer to take place. The mixing

length expressions for wujup and <u; are

. . dU]
U]UZ = - UZQ.2 a‘z' (36)
and
—_— — dT
tuz = - UZQZ 6;2 s (37)

where T is the mean temperature and ¢y 1is an effective
transverse distance a portion of fluid moves before mixing with the
fluid. Thus, if the mixing took place continuously, 2y would be
zero, and the turbulent shear stress and heat transfer would be
zero.

This leads us to a comparison between mixing-length theory and
the elementary kinetic theory of molecular transport. The mixing-
Tength expressions given by Eqs. (36) and (37) are, in fact very
similar to those obtained in the elementary kinetic theory.32 It
is only necessary to identify the macroscopic velocities, temperatures,
and lengths in the barred quantities in Eqs. (36) and (37) with
molecular quantities in kinetic theory (e.g., with molecular
velocities and free paths). It is of interest that it was
apparently kinetic theory that originally inspired turbulent

mixing-length theory; the mixing length was supposed by Prandt] to
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be something like the mean-free path in kinetic theory.3‘ The
transfer mechanisms for the two types of systems appear to be
similar. As shown in this section, turbulent transfer, like
encounters between particles, tends to be somewhat sudden. This
similarity occurs in spite of the fact that turbulent systems are
continuous and dissipative, whereas particle systems are discrete
and conservative. However, particle systems are like turbulent
systems in that they are nonlinear and display sensitive dependence

on initial conditions.33



VI. CONCLUSION

Navier-Stokes turbulence is a chaotic phenomenon. Our
long-term solutions with steady forcing show that the calculated
turbulence has a positive Liapunov exponent, which in turn means
that it is sensitively dependent on initial conditions.

Turbulence has,for a long time, been assumed to be random, !
or at least to have the appearance of randomness. Sensitive
denendence on initial conditions provides an explanation for the
occurrence of apparent randomness in turbulence. But in spite of
its random appearance turbulence has a deterministic element, in
as much as the Navier-Stokes equations which describe it are fully
deterministic. The phrase "deterministic chaos" might therefore
provide a fitting description for turbulence. Although turbulence
is time-dependent and random in appearance, our solutions show
that it can form with no time-dependent or random input. This
again is a result of sensitive dependence of the solutions on
initial conditions.

It may not, however, be a sufficiently complete description of
turbulence to say that it is chaotic. Some of our low-Reynolds-
number flows have a positive Liapunov exponent, and thus are chaotic,
but their Poincaré sections show a pattern in some of their parts.
On the other hand, solutions at somewhat higher Reynolds numbers

show a complete lack of pattern. Perhaps we should reserve the
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term "turbulent" for flows that have a positive Liapunov exponent
and, in addition, have Poincaré sections without pattern.

Turbulence is also aperiodic or nonperiodic. As examples of
flows which contrast with turbulence, we were able to obtain some
periodic and fixed-point solutions. Whereas the fixed-point (in
phase space) flows are time-independent, and the periodic flows
are closed lines in phase space (points on Poincaré sections), the
turbulent flows are time-dependent and fill a portion of phase
space. The turbulent, periodic, and fixed-point flows are all
attracted to lower dimensional regions of phase space called
attractors. The turbulent flows lie on strange or chaotic
attractors.

Another requirement that is often given for flows to be
turbulent is that they have negative velocity-derivative skewness
factors. However, our periodic and fixed-point solutions have
skewness factors that do not vary greatly from those for turbulent
flows. A negative skewness factor seems to be more an indication
of nonlinearity (all of our forced flows are highly nonlinear)
than of turbulence.

By using the instantaneous Navier-Stokes equations for
decaying turbulence, as well as their corresponding moment
equations, it is shown that the energy in turbulence moves between
wavenumber bands, primarily from low wavenumbers to higher ones.
That can occur for both homogeneous and inhomogeneous turbulence.

The energy transfer can take place as a result of nonlinear
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self-interaction as well as of interaction between turbulence and
mean gradients. In both cases the transfer takes place primarily
between wavenumbers that are considerably separated, rather than
between neighboring wavenumbers; the energy often jumps between
wavenumbers differing by about an order of magnitude. Closely
related to these energy jumps is the observation that turbuient
mixing in the presence of mean gradients takes place in localized
regions where eddies shatter, separated by relatively quiescent
regions.

There is an interaction between spectral energy transfer and
dissipation. The former excites the high wavenumber regions of the
spectrum by transferring energy into them. That, in turn, increases
the dissipation because of the high shear stresses between the
small-scale components.

Also, energy transfer among directional components is produced
by the pressure term in the Navier-Stokes equations. That causes
a return to isotropy of turbulence which was initially isotropic,
but which had become anisotropic in the presence of mean shear.

Navier-Stokes turbulence and kinetic-theory systems are
compared. In spite of the fact that the two types of systems are
fundamentally different, the former being continuous and
dissipative, the latter being discrete and conservative particle
systems, there are essential similarities. Both types of systems

are nonlinear and display sensitive dependence on initial
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conditions, and so are chaotic. As a result of their chaoticity,
both have a random appearance. Moreover, turbulent mixing in a
continuous fluid and encounters between discrete particles are
similar in that both show a certain suddenness or localness.
However there does not seem to be anything in simple particle
systems which is comparable to the energy cascades to small scales

of motion which occur in turbulence.
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